10% off filters when purchased with a drive

Vector Drive Technology

Vector Technology in variable speed drives

What is vector drive?

A basic variable speed drive (VSD), perhaps it would be more technically correct to call it a variable frequency drive (VFD), uses digital techniques (pulse width modulation, PWM) to synthesise varying frequency sine waves to change the speed of the motor. If the motor is subject to a load torque, then the actual speed of the motor is very likely be less than the speed commanded by the VSD. The VSD will not be aware that there is any discrepancy between command and actual speed as there is no means to feed this information back to the drive. Early designs of VSD’s operated this way and generally the slower the speed of the drive the greater the discrepancy between commanded and actual speed.

As electronic technology developed and in particular the speed of microprocessors increased, then it became possible to integrate a feedback loop into the VSD. There are two common ways of achieving feedback in a modern VSD; either with or without an external sensor fitted to the motor. The former can be known as a closed loop vector controlled drive whereas the latter can be know as an open loop vector controlled drive. This last term is technically incorrect as the drive is not truly open loop and the term ‘sensorless’ vector control is a more accurate description of the VSD.

The term Vector Control relates to controlling the vector sum of the torque producing current, which is in phase with the voltage, and the magnetising current which lags by 90 degrees. The VSD is managing two currents in two control loops whilst monitoring speed, torque and magnetising current. Any change in these monitored conditions which deviate from the commanded speed or torque will be fed back into the control loops to be corrected.


What is the difference between sensor and sensorless vector drives?

Whilst commissioning a vector controlled VSD you would normally be required to enter basic data from the motors nameplate. This is because the drive will model the motors characteristics using it’s knowledge base and this information will be used in the control loop algorithms. Internally the drive will monitor the currents flowing and make any necessary corrections with reference to the commanded speed or torque and the model data. This is essentially how the senseless vector drive is operating.

A vector drive fitted with a sensor feedback in the form of a rotary incremental encoder, or sometimes an analogue resolver, has additional information giving actual speed of the motor. This provides a more accurate control of the motor and, in particular enables the motor to deliver full torque at zero speed, something a drive without the encoder feedback can not do reliably.


What applications require a vector drive with sensor feedback?

Whilst senseless vector control in modern well designed fast VSD’s minimises torque induced motor slip, it will still occur and there are some applications which would normally still need to have encoder feedback fitted. For example, winder applications need very close control of speed and/or torque. Errors in these applications can accumulate and become a major problem.

Lift, hoists and any application with a holding brake that can not be released until 100% torque is on the motor will need encoders fitting to the motors.

Any application that needs precision speed or position will need encoders. It may also be worth considering a servo motor system rather than an inverter system if accuracy is critical as servo systems are designed to control speed and position very accurately.


You may also be interested in...

VIPA - the art of automation

What is an “inverter”?

AC Inverters are devices for controlling motor speed by converting a DC voltage generated from your connected power supply to a varying frequency AC voltage which can control the speed of the connected motor. The development of semiconductor technology and the processing power of modern microprocessors have enhanced AC inverter drive performance significantly. When applied to industrial and environmental applications, they have improved productivity, reduced energy needs and made a huge contribution to the development of the motor control industry. They  have also brought about a substantial change to our lives. For example, airflow from air-conditioners, speed of elevators, pumps and fans can all be regulated by changing motor speed.  By regulating the speed, energy consumption is reduced which contributes to energy conservation.

Not sure that it is an Inverter you need? Inverters are called by different names and so it can be confusing, but essentially if you are looking for electronics to control the speed of an AC motor then it is likely that you are looking for an Inverter which can also be known as a Variable Frequency Drive (VFD), Variable Speed Drive (VSD), AC Drive, AC inverter drive, Frequency Converter or AC motor speed controller.

Copyright © 2018 Inverters UK, Bromborough, Merseyside